Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Aging (Albany NY) ; 16(7): 6521-6536, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613798

Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.


Acute Lung Injury , Allyl Compounds , Hydrogen Sulfide , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Sulfides , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , NF-kappa B/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects , Allyl Compounds/pharmacology , Allyl Compounds/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Male , Hydrogen Sulfide/metabolism , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Garlic/chemistry , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Dietary Supplements
2.
Gene ; 822: 146348, 2022 May 15.
Article En | MEDLINE | ID: mdl-35183682

Aging is referred to progressive dysfunction of body organs, including the brain. This study aims to explore the anti-aging effect of combing nicotinamide mononucleotide (NMN) and lycopene (Lyco) (NMN + Lyco) on aging rats and senescent PC12 cells. Both in vivo and in vitro aging models were established using D-galactose (D-gal). The combination showed a trend to superiority over monotherapy in preventing aging in vivo and in vitro. Morris water maze test showed that NMN + Lyco effectively improved the ability of spatial location learning and memory of aging model rats. NMN + Lyco mitigated the oxidative stress of rat brains, livers, and PC12 cells by elevating the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), GSH, as well as total antioxidant capacity (T-AOC), and reducing malondialdehyde (MDA) content. CCK-8 assay, senescence-associated ß-galactosidase staining, and flow cytometer confirmed the cellular senescence of PC12 cells after exposing D-gal, and indicated the anti-senescence effect of NMN + Lyco in vitro. Moreover, NMN + Lyco effectively down-regulated the expressions of p53, p21, and p16 (senescence-related genes), and activated Keap1-Nrf2 signaling in both in vivo and in vitro aging models. In total, NMN + Lyco protected rats and PC12 cells from cognitive impairment and cellular senescence induced by D-gal, of which effects might be linked to the reduction of oxidative stress and the activation of Keap1-Nrf2 signaling.


Aging/psychology , Cognitive Dysfunction/prevention & control , Galactose/adverse effects , Kelch-Like ECH-Associated Protein 1/metabolism , Lycopene/administration & dosage , NF-E2-Related Factor 2/metabolism , Nicotinamide Mononucleotide/administration & dosage , Aging/drug effects , Animals , Cognitive Dysfunction/etiology , Drug Therapy, Combination , Gene Expression Regulation/drug effects , Lycopene/pharmacology , Male , Morris Water Maze Test , Nicotinamide Mononucleotide/pharmacology , Oxidative Stress/drug effects , PC12 Cells , Rats , Signal Transduction/drug effects , Spatial Learning/drug effects , Treatment Outcome
...